effect of hydroquinone dderivatives in electrolytes on dye-sensitized solar cell performance
Authors
abstract
new kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. addition of 0.05 m a hydroquinone derivative in the electrolyte comprising 0.5 m 1-methyl-3-propylimidazolium iodide (mpii) and 0.05 m i2 in a mixture of acetonitrile and valeronitrile (volume ratio, 85:15) enhanced significantly photocurrent density from 11.1 to 12.8 ma/cm2, and voltage increased from 0.66 to 0.68 v. as a result, overall conversion efficiency increased from 4.4% to 4.8%, corresponding to increment of 10.9%.
similar resources
Effect of Hydroquinone Dderivatives in Electrolytes on Dye-Sensitized Solar Cell Performance
New kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. Addition of 0.05 M a hydroquinone derivative in the electrolyte comprising 0.5 M 1-methyl-3-propylimidazolium iodide (MPII) and...
full textEffects of Sensitization with Natural Pigments on the Performance of Dye-sensitized Solar Cell (DSSC)
Three natural pigments including wild iris, black pomegranate bark and black grapes were used as sensitizer in dye sensitized solar cells (DSSCs) based on TiO2 nanoparticles. The results showed that the DSSC made of black pomegranate bark was more efficient than the other cells due to its strong bonding with TiO2 nanoparticles. Longer electron lifetime, lower electron recombination, and lower...
full textDye-Sensitized Solar Cells Based on Polymer Electrolytes
Dye-sensitized solar cells (DSSCs) using organic liquid electrolytes have received significant attention because of their low production cost, simple structure and high power conversion efficiency [1-5]. Recently, the power conversion efficiencies of DSSCs using Ruthenium complex dyes, liquid electrolytes, and Pt counter electrode have reached 10.4 % (100 mW/cm2, AM 1.5) by Grätzel group [6]. H...
full textElectron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell
The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...
full textDye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells
The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in tu...
full textRobust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes
Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devic...
full textMy Resources
Save resource for easier access later
Journal title:
journal of nanostructuresPublisher: university of kashan
ISSN 2251-7871
volume 4
issue 1 2014
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023